17 research outputs found

    A spring search algorithm applied to engineering optimization problems

    Get PDF
    At present, optimization algorithms are used extensively. One particular type of such algorithms includes random-based heuristic population optimization algorithms, which may be created by modeling scientific phenomena, like, for example, physical processes. The present article proposes a novel optimization algorithm based on Hooke’s law, called the spring search algorithm (SSA), which aims to solve single-objective constrained optimization problems. In the SSA, search agents are weights joined through springs, which, as Hooke’s law states, possess a force that corresponds to its length. The mathematics behind the algorithm are presented in the text. In order to test its functionality, it is executed on 38 established benchmark test functions and weighed against eight other optimization algorithms: a genetic algorithm (GA), a gravitational search algorithm (GSA), a grasshopper optimization algorithm (GOA), particle swarm optimization (PSO), teaching–learning-based optimization (TLBO), a grey wolf optimizer (GWO), a spotted hyena optimizer (SHO), as well as an emperor penguin optimizer (EPO). To test the SSA’s usability, it is employed on five engineering optimization problems. The SSA delivered better fitting results than the other algorithms in unimodal objective function, multimodal objective functions, CEC 2015, in addition to the optimization problems in engineering

    Towards an eco-friendly coffee rust control : compilation of natural alternatives from a nutritional and antifungal perspective

    Get PDF
    Hemileia vastatrix (HV) is the pathogen responsible for the coffee leaf rust (CLR) disease that has spread globally. CLR causes losses of up to a billion dollars annually and affects all types of crops regardless of their production regime (organic or inorganic). Additionally, smallholders produce approximately 80% of coffee in developing countries. The condition causes losses of up to a billion dollars annually. It affects all types of crops regardless of their production regime (organic or inorganic). Approximately 80% of coffee is produced by smallholders in developing countries. Until the 90s, shaded-production systems and native varieties were encouraged; however, the rapid spread of CLR has forced farmers to migrate towards inorganic schemes, mainly due to a lack of knowledge about natural alternatives to pesticides that can be implemented to control HV. Therefore, the purpose of this article is to compile the currently existing options, emphasizing two key factors that guarantee efficient rust control: selective fungicidal activity against HV and the nutrition of coffee crops. Thus, by comprehending how these natural compounds (such as plant, bacteria, fungi, animals, or algae metabolites) impact coffee rust proliferation. Furthermore, since a various range of biochar effects contributes to the control of foliar fungal pathogens through modification of root exudates, soil properties, and nutrient availability, which influence the growth of antagonist microorganisms, we present a review of the pathogen-suppressive effects of biochar, and new control strategies suitable for organic schemes can be developed.Publisher PDFPeer reviewe

    Environmental persistence, detection, and mitigation of endocrine disrupting contaminants in wastewater treatment plants – a review with a focus on tertiary treatment technologies

    Get PDF
    Endocrine disrupting chemicals are a group of contaminants that have severe effects on humans and animals when exposed, like cancer and alterations to the nervous and reproductive systems. The increasing concentrations of several endocrine disrupting chemicals in the environment are strongly related to anthropogenic activities, and as the population grows this problem becomes more relevant. Thus, wastewater is one of the main sources of endocrine disrupting chemicals, and the technologies employed during primary and secondary treatment in wastewater treatment plants cannot remove these contaminants. Due to this, researchers have tried to develop more efficient technologies for tertiary treatment of wastewater and reduce the concentration of endocrine disrupting chemicals discharged into the environment. Some of the most promising technologies include adsorption, ultrafiltration, advanced oxidation processes and biodegradation. The use of nanomaterials as adsorbents, catalysts, membranes and supports has played a key role in enhancing the efficiency of these technologies. The results showed that these technologies have great potential on the lab-scale, and even some of them have already been employed at some wastewater treatment plants. However, there are still some challenges to achieving a global implementation of these technologies, related to reducing the costs of materials and enhancing their current performance. The use of biomass/waste derived carbon materials and implementing hybrid technologies are accessible approaches for their implementation in tertiary treatment.This work is part of the project entitled “Contaminantes emergentes y prioritarios en las aguas reutilizadas en agricultura: riesgos y efectos en suelos, producción agrícola y entorno ambiental” funded by CSIC-Tecnológico de Monterrey under the i-Link + program (LINKB20030). The author “Jesús Alfredo Rodríguez-Hernández” acknowledges Consejo Nacional de Ciencia y Tecnología (CONACyT) for awarding a scholarship for a PhD in nanotechnology (CVU: 924193). CONACyT is thankfully acknowledged for partially supporting this work under the Sistema Nacional de Investigadores (SNI) program awarded to Rafael G. Araújo (CVU: 714118), Juan Eduardo Sosa-Hernández (CVU: 375202), Elda M. Melchor-Martínez (CVU: 230784), Manuel Martinez-Ruiz (CVU: 418151), Hafiz M. N. Iqbal (CVU: 735340) and Roberto Parra-Saldívar (CVU: 35753). The authors are also thankful to “Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo” in the Latin American development network “Lacasas Inmovilizadas para la Degradación de Compuestos Aromáticos en Aguas Residuales” (LIDA, project 318RT0552). All listed authors are also grateful to their representative universities/institutes for providing literature facilities and the Biorender online program for the elaboration of the graphical abstract and Fig. 1–5.Peer reviewe

    Recent Advances in Prodigiosin as a Bioactive Compound in Nanocomposite Applications

    Get PDF
    Bionanocomposites based on natural bioactive entities have gained importance due to their abundance; renewable and environmentally benign nature; and outstanding properties with applied perspective. Additionally, their formulation with biological molecules with antimicrobial, antioxidant, and anticancer activities has been produced nowadays. The present review details the state of the art and the importance of this pyrrolic compound produced by microorganisms, with interest towards Serratia marcescens, including production strategies at a laboratory level and scale-up to bioreactors. Promising results of its biological activity have been reported to date, and the advances and applications in bionanocomposites are the most recent strategy to potentiate and to obtain new carriers for the transport and controlled release of prodigiosin. Prodigiosin, a bioactive secondary metabolite, produced by Serratia marcescens, is an effective proapoptotic agent against bacterial and fungal strains as well as cancer cell lines. Furthermore, this molecule presents antioxidant activity, which makes it ideal for treating wounds and promoting the general improvement of the immune system. Likewise, some of the characteristics of prodigiosin, such as hydrophobicity, limit its use for medical and biotechnological applications; however, this can be overcome by using it as a component of a bionanocomposite. This review focuses on the chemistry and the structure of the bionanocomposites currently developed using biorenewable resources. Moreover, the work illuminates recent developments in pyrrole-based bionanocomposites, with special insight to its application in the medical area.This work was funded by CSIC-Tecnológico de Monterrey under i-Link+program (LINKB20030) for a project entitled “Contaminantes emergentes y prioritarios en las aguas reutilizadas en agricultura: riesgos y efectos en suelos, producción agrícola y entorno ambiental”.Peer reviewe

    Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants

    Get PDF
    PFAS are a very diverse group of anthropogenic chemicals used in various consumer and industrial products. The properties that characterize are their low degradability as well as their resistance to water, oil and heat. This results in their high persistence in the environment and bioaccumulation in different organisms, causing many adverse effects on the environment as well as in human health. Some of their effects remain unknown to this day. As there are thousands of registered PFAS, it is difficult to apply traditional technologies for an efficient removal and detection for all. This has made it difficult for wastewater treatment plants to remove or degrade PFAS before discharging the effluents into the environment. Also, monitoring these contaminants depends mostly on chromatography-based methods, which require expensive equipment and consumables, making it difficult to detect PFAS in the environment. The detection of PFAS in the environment, and the development of technologies to be implemented in tertiary treatment of wastewater treatment plants are topics of high concern. This study focuses on analyzing and discussing the mechanisms of occurrence, migration, transformation, and fate of PFAS in the environment, as well the main adverse effects in the environment and human health. The following work reviews the recent advances in the development of PFAS detection technologies (biosensors, electrochemical sensors, microfluidic devices), and removal/degradation methods (electrochemical degradation, enzymatic transformation, advanced oxidation, photocatalytic degradation). Understanding the risks to public health and identifying the routes of production, transportation, exposure to PFAS is extremely important to implement regulations for the detection and removal of PFAS in wastewater and the environment.This work is part of the project entitled “Contaminantes emergentes y prioritarios en las aguas reutilizadas en agricultura: riesgos y efectos en suelos, producción agrícola y entorno ambiental” funded by CSIC-Tecnológico de Monterrey under i-Link + program (LINKB20030).Peer reviewe

    Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection

    No full text
    Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.The work is part of the project entitled “Contaminantes emergentes y prioritarios en las aguas reutilizadas en agricultura: riesgos y efectos en suelos, producción agrícola y entorno ambiental” funded by CSIC-Tecnologico de Monterrey under i-Link+ program (LINKB20030). We are also thankful to “Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo” in the Latin American development network “Lacasas Inmovilizadas para la Degradación de Compuestos Aromáticos en Aguas Residuales” (LIDA, project 318RT0552). All listed authors are also grateful to their representative universities/institutes for providing literature facilities.Peer reviewe

    Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects

    No full text
    The pervasive manifestation and toxicological influence of hazardous pesticides pose adverse consequences on various environmental matrices and humans, directly via bioaccumulation or indirectly through the food chain. Due to pesticide residues' continuous presence above permissible levels in multiple forms, much attention has been given to re-evaluating to regulate their usage practices without harming or affecting the environment. However, there are regulations in place banning the use of multiple hazardous pesticides in the environment. Thus, efforts must be made to achieve robust detection and complete mitigation of pesticides, possibly through a combination of new and conventional methods. The complex nature of pesticides helps them to react differently across different environmental matrices. Therefore, highly hazardous pesticides are a risk to human well-being and the environment through enzymatic inhibition and the induction of oxidative stress. Consequently, developing fast, sensitive sensing strategies is essential to detect and quantify multiple pesticides and remove the pesticides present in the specific matrix without creating harmful derivatives. Additionally, the technology should be available worldwide to eliminate pesticide residuals from the environment. There are regulations, in practice, that limit the selling, storage, use of pesticides, and their concentration in the environment, although such regulations must be revised. However, the existing literature lacks regulatory, analytical detection, and mitigation considerations for pesticide remediation. Furthermore, the enforcement of such regulations and strict monitoring of pesticides in developing countries are needed. This review spotlights various analytical detection, regulatory, and mitigation considerations for efficiently removing hazardous pesticides.Consejo Nacional de Ciencia y Tecnología (CONACYT) Mexico and Tecnologico de Monterrey supported this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU: 735340) and Roberto Parra-Saldivar (CVU: 35753). The graphical abstract was Created with BioRender.com and extracted under premium membership.Peer reviewe

    A new "doctor and patient" optimization algorithm: An application to energy commitment problem

    Get PDF
    Regular assessments of events taking place around the globe can be a conduit for the development of new ideas, contributing to the research world. In this study, the authors present a new optimization algorithm named doctor and patient optimization (DPO). DPO is designed by simulating the process of treating patients by a physician. The treatment process has three phases, including vaccination, drug administration, and surgery. The efficiency of the proposed algorithm in solving optimization problems compared to eight other optimization algorithms on a benchmark standard test function with 23 objective functions is been evaluated. The results obtained from this comparison indicate the superiority and quality of DPO in solving optimization problems in various sciences. The proposed algorithm is successfully applied to solve the energy commitment problem for a power system supplied by a multiple energy carriers system.Peer ReviewedPostprint (published version

    Underutilized Mexican Plants: Screening of Antioxidant and Antiproliferative Properties of Mexican Cactus Fruit Juices

    No full text
    Cacti fruits are known to possess antioxidant and antiproliferative activities among other health benefits. The following paper evaluated the antioxidant capacity and bioactivity of five clarified juices from different cacti fruits (Stenocereus spp., Opuntia spp. and M. geomettizans) on four cancer cell lines as well as one normal cell line. Their antioxidant compositions were measured by three different protocols. Their phenolic compositions were quantified through high performance liquid chromatography and the percentages of cell proliferation of fibroblasts as well as breast, prostate, colorectal, and liver cancer cell lines were evaluated though in vitro assays. The results were further processed by principal component analysis. The clarified juice from M. geomettizans fruit showed the highest concentration of total phenolic compounds and induced cell death in liver and colorectal cancer cells lines as well as fibroblasts. The clarified juice extracted from yellow Opuntia ficus-indica fruit displayed antioxidant activity as well as a selective cytotoxic effect on a liver cancer cell line with no toxic effect on fibroblasts. In conclusion, the work supplies evidence on the antioxidant and antiproliferative activities that cacti juices possess, presenting potential as cancer cell proliferation preventing agents

    Mexican Microalgae Biodiversity and State-Of-The-Art Extraction Strategies to Meet Sustainable Circular Economy Challenges: High-Value Compounds and Their Applied Perspectives

    No full text
    In recent years, the demand for naturally derived products has hiked with enormous pressure to propose or develop state-of-the-art strategies to meet sustainable circular economy challenges. Microalgae possess the flexibility to produce a variety of high-value products of industrial interests. From pigments such as phycobilins or lutein to phycotoxins and several polyunsaturated fatty acids (PUFAs), microalgae have the potential to become the primary producers for the pharmaceutical, food, and agronomical industries. Also, microalgae require minimal resources to grow due to their autotrophic nature or by consuming waste matter, while allowing for the extraction of several valuable side products such as hydrogen gas and biodiesel in a single process, following a biorefinery agenda. From a Mexican microalgae biodiversity perspective, more than 70 different local species have been characterized and isolated, whereas, only a minimal amount has been explored to produce commercially valuable products, thus ignoring their potential as a locally available resource. In this paper, we discuss the microalgae diversity present in Mexico with their current applications and potential, while expanding on their future applications in bioengineering along with other industrial sectors. In conclusion, the use of available microalgae to produce biochemically revenuable products currently represents an untapped potential that could lead to the solution of several problems through green technologies. As such, if the social, industrial and research communities collaborate to strive towards a greener economy by preserving the existing biodiversity and optimizing the use of the currently available resources, the enrichment of our society and the solution to several environmental problems could be attained
    corecore